4 research outputs found

    Supporting Peer Help and Collaboration in Distributed Workplace Environments

    Get PDF
    Special Issue on Computer Supported Collaborative LearningIncreasingly, organizations are geographically distributed with activities coordinated and integrated through the use of information technology. Such organizations face constant change and the corresponding need for continual learning and renewal of their workers. In this paper we describe a prototype system called PHelpS (Peer Help System) that facilitates workers in carrying out such "life long learning". PHelpS supports workers as they perform their tasks, offers assistance in finding peer helpers when required, and mediates communication on task-related topics. When a worker runs into difficulty in carrying out a task, PHelpS provides a list of other workers who are ready, willing and able to help him or her. The worker then selects a particular helper with PHelpS supporting the subsequent help interaction. The PHelpS system acts as a facilitator to stimulate learning and collaboration, rather than as a directive agent imposing its perspectives on the workers. In this way PHelpS facilitates the creation of extensive informal peer help networks, where workers help one another with tasks and opens up new research avenues for further exploration of AI-based computer-supported collaborative learning. (http://aied.inf.ed.ac.uk/members98/archive/vol_9/greer/full.html

    Hydrogen cycle on CeO2 (111) surfaces: density functional theory calculations

    No full text
    We studied the interaction of perfect and lightly reduced ceria (111) surfaces with hydrogen and water molecules using density functional calculations implementing the generalized gradient approximation (GGA) and onsite Coulomb interactions (GGA+U). We predicted the relative surface energies at different states of reduction and in the presence of water, allowing insight into surface processes under a variety of conditions. Several unusual properties of the ceria surface were brought to the fore: the dissociation of water molecules on the ideal surface, the rapid dissociation of water at vacancy sites, and the strongly exothermic dissociation of H2 on the ideal surface. These results have strong implications for the interpretation of experimental data and the construction of reaction schemes for this technologically important metal oxide surface. © 2007 American Chemical Society

    Comparison of cationic, anionic and neutral hydrogen bonded dimers

    No full text
    Short Strong Hydrogen Bonds (SSHBs) play an important role in many fields of physics, chemistry and biology. Since it is known that SSHBs exist in many biological systems, the role of hydrogen bonding motifs has been particularly interesting in enzyme catalysis, bio-metabolism, protein folding and proton transport phenomena. To explore the characteristic features of neutral, anionic and cationic hydrogen bonds, we have carried out theoretical studies of diverse homogeneous and heterogeneous hydrogen bonded dimers including water, peroxides, alcohols, ethers, aldehydes, ketones, carboxylic acids, anhydrides, and nitriles. Geometry optimization and harmonic frequency calculations are performed at the levels of Density Functional Theory (DFT) and Moller-Plesset second order perturbation (MP2) theory. First principles Car-Parrinello molecular dynamics (CPMD) simulations are performed to obtain IR spectra derived from velocity-and dipole-autocorrelation functions. We find that the hydrogen bond energy is roughly inversely proportional to the fourth power of the r(O/N-H) distance. Namely, the polarization of the proton accepting O/N atom by the proton-donating H atom reflects most of the binding energy in these diverse cation/anion/neutral hydrogen bonds. The present study gives deeper insight into the nature of hydrogen-bonded dimers including SSHBs.close151
    corecore